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ABSTRACT

Let X, Y be finite sets and T a set of functions X → Y which we will call

“tableaux”. We define a simplicial complex whose facets, all of the same

dimension, correspond to these tableaux. Such tableau complexes have

many nice properties, and are frequently homeomorphic to balls, which

we prove using vertex decompositions [BP79].

In our motivating example, the facets are labeled by semistandard

Young tableaux, and the more general interior faces are labeled by Buch’s

set-valued semistandard tableaux. One vertex decomposition of this

“Young tableau complex” parallels Lascoux’s transition formula for vex-

illary double Grothendieck polynomials [La01, La03]. Consequently, we

obtain formulae (both old and new) for these polynomials. In particular,

we present a common generalization of the formulae of Wachs [Wa85] and

Buch [Bu02], each of which implies the classical tableau formula for Schur

polynomials.
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1. Introduction

1.1. Statement of results. Let X and Y be two finite sets. We will call

functions from X to Y tableaux; we think of each tableau f : X → Y as a

labeling of the points of X by elements of Y . Formally, we identify a tableau

f with its corresponding set {(x 7→ y) : f(x) = y} ⊆ X × Y of ordered pairs,

whose projection to X is bijective.

We specify a subset T of “special” tableaux. Also, let E ⊆ X×Y be a relation

containing every f ∈ T . There are obvious minimal and maximal choices of E,

namely
⋃

T :=
⋃

f∈T f and X × Y , but it will be convenient to not restrict E.

Our motivating example is when X is the set of boxes in partition λ and

Y = {1, . . . , n}, so a tableau f : X → Y is a Young tableau of shape λ and with

entries bounded above by n (without any other demands on the labeling), and

T is the special subset of semistandard Young tableaux. In Section 1.2, we will

describe this case in detail.

Define the simplicial complex ∆E(X
T
−→ Y ), which we call a tableau com-

plex, as follows. Consider the collection of subsets of E as a simplex under re-

verse inclusion; thus the vertices are the complements (x X7→ y) := E \{(x 7→ y)}
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rather than the elements (x 7→ y) ∈ E. We view the faces of this simplex as

set-valued tableaux, thought of as relations F : X ⇒ Y , in which every el-

ement x ∈ X is labeled by a set of elements F (x) ⊆ Y . A set-valued tableau

F ′ is a face of F whenever F ′ ⊇ F , meaning that F ′(x) ⊇ F (x) for all x ∈ X .

(This set-theoretic containment is always intended when we say that one set-

valued tableau contains another, even when both are being considered as faces

of a simplicial complex, where containment among faces goes the opposite way.)

The tableau complex is defined by its facets (maximal faces), which we declare

to be the tableaux f ∈ T . (In this paper, the terms “function” and “tableau”,

when unadorned by “set-valued”, mean single-valued functions in the usual

sense.) The face with no vertices, which we call the empty face, is the set-

valued tableau E. Note, in particular, that the faces of ∆E(X
T
−→ Y ) are those

set-valued tableaux that contain a tableau from T .

Example: Consider the tableau complex in which X = {1, 2, 3, 4} and Y is the

English alphabet, and where T consists of all the English words in [dh]e[al][dl].

In detail, E = {(1 7→ d), (1 7→ h), (2 7→ e), (3 7→ a), (3 7→ l), (4 7→ d), (4 7→ l)}.

For simplicity, in the following figure, at the vertices we indicate the unused

letters of E. For example, the vertex common to “hell”, “heal”, “head” and

−−a− −−−l

deal

hell head

deaddell
heal

−−−d −−l−

d−−−

held

h−−−

“held” is (1 X7→ d) = E \ {(1 7→ d)}. This complex is a 2-ball, but if “deld” were

a word, it would label the outer face, and this complex would be a 2-sphere.

Theorem A: The following hold for an arbitrary tableau complex ∆ =

∆E(X
T
−→ Y ).

1. ∆ is pure, meaning that its facets (the tableaux f ∈ T ) all have the

same dimension.

2. The codimension of a face F in ∆ is the number
∑

x∈X(|F (x)| − 1) of

its “extra” values. For example, faces of codimension 1, which we call



320 A. KNUTSON, E. MILLER AND A. YONG Isr. J. Math.

ridges, are set-valued tableaux taking two values for precisely one x ∈ X

and taking one value at all other points of X .

3. Each ridge is a face of at most two facets. In particular, if a tableau

complex is shellable then it is homeomorphic to a ball or sphere.

4. The link of a face in a tableau complex is again a tableau complex.

All of these results are proved in Section 2.1 except the last (the statement

about links), which is Proposition 2.3.

We shall see that abstractly, a tableau complex is a (multicone on a) top-

dimensional subcomplex of a join of boundaries of simplices. Tableau complexes

can also be characterized, among pure complexes, by the extremal property

given toward the end of Section 3.

Although tableau complexes are not generally (shellable) balls or spheres,

we can give conditions that guarantee this conclusion. The next theorem thus

defines the main class of tableau complexes of interest in this paper. Except for

the claim about interior faces, which is Proposition 2.2, it is a simpler-to-state

special case of Theorem 2.8.

Theorem B: Let X be a poset, and Y totally ordered. Let Ψ be a set of pairs

(x1, x2) in X with x1 < x2. Let T be the set of tableaux f : X → Y such that

• if x1 ≤ x2, then f(x1) ≤ f(x2), and

• if (x1, x2) ∈ Ψ, then f(x1) < f(x2);

thus T consists of the order-preserving tableaux from X to Y that are strictly

order-preserving on the pairs in Ψ. Let E ⊇
⋃

T . Then the tableau complex

∆E(X
T
−→ Y ) is

1. homeomorphic to a ball or sphere;

2. vertex-decomposable, as defined in [BP79], and hence shellable; and

3. a manifold with (possibly empty) boundary whose interior faces are those

set-valued tableaux F such that every tableau f ⊆ F lies in T .

If Y is taken to be a set of natural numbers, then the tableaux in Theorem B

are P -partitions [St98], where X = P . In our context, however, this point

of view is misleading for a couple of reasons. First, the condition that Y be

totally ordered can be relaxed in a natural way, as we will see during the proof.

Second, P -partitions naturally form a set that is infinite and possesses additive

structure; both of these properties are unnatural from the point of view of

tableau complexes. More deeply, P -partitions correspond naturally to the basis
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elements of the Stanley–Reisner ring of a certain simplicial complex (a Gröbner

degeneration of the cone of P -partitions) rather than to the facets.

We give three formulae for the Hilbert series of the Stanley–Reisner ring, the

third one based on an explicit shelling of tableau complexes. For proofs, see

Section 4, where the statements break the products over v ⊇ F and v 6⊇ F

further into products over x ∈ X .

Theorem C: Let ∆ = ∆E(X
T
−→ Y ) be a tableau complex, and recall that the

vertices of ∆ are set-valued tableaux (x X7→ y) ⊆ E.

1. The Hilbert series, in variables {tv : v is a vertex of ∆}, equals K∆∏
(1−tv) ,

where the denominator product is over all vertices v of ∆, and the nu-

merator is the K-polynomial

K∆ =
∑

F

∏

v⊇F

tv
∏

v 6⊇F

(1 − tv),

the sum being over all set-valued tableaux F ⊆ E such that f ⊆ F for

some f ∈ T .

2. If ∆ is homeomorphic to a ball or a sphere, then writing |F | =∑
x∈X |F (x)| and |X | for the size of X , the K-polynomial can be ex-

pressed an alternating sum

K∆ =
∑

F

(−1)|F |−|X|
∏

v 6⊇F

(1 − tv)

over the set-valued tableaux F ⊆ E such that every tableau f ⊆ F

satisfies f ∈ T .

3. Furthermore, assume the hypotheses of Theorem B, and set E =
⋃

T .

Then there is a shelling for ∆ such that the minimal new face when

the facet f ∈ T is added during the shelling is an explicitly described

set-valued tableau N(f) ⊇ f . Consequently,

K∆ =
∑

f∈T

∏

v 6⊇f

(1 − tv)
∏

v⊇N(f)

tv.

As a result of Theorem C.3, we get a positive combinatorial rule to compute

the h-vector (h0, h1, . . . ) of ∆: if η(f) = |E \ N(f)| − 1, then hj counts the

number of f ∈ T with η(f) = j.

1.2. Young tableau complexes. We now describe the prototypical example

of a tableau complex, and an application to computing vexillary Grothendieck
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polynomials, or equivalently, Hilbert series formulae for vexillary determinantal

varieties.

Let λ ⊆ N
2 be an English partition, or equivalently, a Young shape with its

origin at its upper-left corner. A set-valued Young tableau [Bu02] is a filling

of the boxes of λ, each with a nonempty finite set of natural numbers. The set

in each box is typically expressed as a strictly increasing list. When the set

in every box is a singleton, what results is an (ordinary) Young tableau. If |τ |

denotes the number of entries in a set-valued tableau τ , and |λ| is the number

of boxes in the partition, then |τ | ≥ |λ|. Moreover, |τ | = |λ| only for tableaux.

(Tableaux are assumed ordinary unless the term “set-valued” is written.)

A set-valued tableau τ is called semistandard if for every pair b1, b2 of boxes

of τ ,
• each entry of b1 is weakly less than each entry of b2 whenever b1 lies left

of b2, and

• each entry of b1 is strictly less than each entry of b2 whenever b1 lies

above b2.

One can speak of one set-valued tableau containing another (of the same shape

λ) if for each box of λ, the set of numbers in one set-valued tableau contains

the corresponding set in the other. In these terms, for τ to be semistandard,

one needs that every tableau contained in τ is semistandard in the usual sense.

More generally, we define a set-valued tableau to be limit semistandard if

some tableau it contains is semistandard. For example, the first of the following

set-valued tableaux is semistandard, the second is limit semistandard, and the

third is neither:
1,3 3

4,5 5 9

8

1,4 2,3 3

2 4,5 4

4

2,3

2,4

3,5

3,4

4

3

6

3,6

Hereafter, we will not bother to write the commas in our examples; no confusion

will result because we only use numbers that are at most 9.

The union of two set-valued tableaux of the same shape λ simply assigns to

each box of λ the union of the two sets associated to it. Moreover, if either

set-valued tableau is limit semistandard, so is the union. The intersection is

not always defined, however, because of the requirement that every box of λ be

nonempty.

In addition to the partition λ, fix a maximum entry value n ∈ N+ =

{1, 2, 3, . . .}. Define the empty-face tableau Eλ,n associated to λ and n as
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the union of all the semistandard tableaux with shape λ and all entries at most

n.

Consider the partition λ as a poset in which (i, j) ≤ (i′, j′) whenever i ≤ i′

and j ≤ j′; thus each box is less than the boxes southeast of it. Writing

[n] = {1, . . . , n}, we get a tableau complex ∆Eλ,n
(λ

T
−→ [n]), in the sense of

Theorem B: take Ψ to be the set of pairs (upper box, lower box) in which one

box sits atop another in λ, so T is the set of semistandard Young tableaux on λ

with maximum value n. Observing that ∆Eλ,n
(λ

T
−→ [n]) depends only on λ

and n, we denote this Young tableau complex by ∆(λ, n). See Figure 1 for

an example.

12

2 23 3

2

23

12
1 12

1

2

1

3

2

3
23

Figure 1. A Young tableau complex. At left is the empty-face tableau.

The special case of Theorem B for Young tableau complexes is as follows.

Corollary: The Young tableau complex ∆(λ, n) is homeomorphic to a shell-

able ball or sphere, and its interior faces are labeled by Buch’s semistandard

set-valued Young tableaux [Bu02].

Note that when all columns of lambda have height n, the complex ∆(λ, n)

has only the empty face. Furthermore, for n ≥ 2, ∆(λ, n) is homeomorphic to

a sphere if and only if λ consists of a number of columns of height n followed

by a single box; this follows from Proposition 2.2.

Example 1.1: Let λ = (2, 1) and n = 3. Then ∆λ,3 is a 3-dimensional ball.

It has one interior vertex, missing the 2 in the upper left box. We draw the

boundary 2-sphere in Figure 2.

When vertex-decomposing a Young tableau complex—that is, writing it as

the union of the star and the deletion of a single vertex—the two subcomplexes

are flagged Young tableau complexes, in which a vector ~n bounds the sizes of

the entries in the rows of λ. This suggests that we ought to work in that level

of generality; see Figure 3.
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23

2 2

12

23

2

12

23

23
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12

2

1

12

2

2

2

1212

2 3

23

123

23

2 2 23

23
12 23

2

12

2

123 12

23

1 12 1

3

12 13

23

12

3

13

2

3

13

2 13

23

3

2 12312312

3

12

3

12

2

3

12

2

23

12

12

23

12

Figure 2. A triangulated 2-sphere of properly limit semistan-

dard tableaux. The two edges with arrows meet around the

back side of the sphere.

1 2
3

1 2
23

2 2
3

2 2
23

3
1221 1

3

1 12
3

1 12
2

12 1
2 1 1

2

1 1
23

1 2
2

12 2
2

12 1
3

12 2
3

1212
23

1212
2

12 2
23

2 12
23

1212
3

12 1
23

1 12
23

Figure 3. The empty-face tableau and simplicial complex for

λ = (2, 1) and ~n = (2, 3).

Flagged Young tableaux are used to compute the Schubert polynomials for

vexillary permutations [Wa85], and one choice of vertex decomposition par-

allels the “transition formula” for vexillary double Grothendieck polynomi-

als [La01, La03]. Hence we are able to give set-valued-tableaux-based formu-

lae for double Grothendieck polynomials of vexillary permutations, via Theo-

rem C. The second formula in the following corollary, which appeared already

in [KMY05], is a common generalization of Buch’s and Wachs’s formulae, each

of which specializes to the usual tableau formula for Schur polynomials. The
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other two parts give new formulae for these polynomials. See Section 5 for

proofs.

Corollary: Let π ∈ Sn be a vexillary permutation with associated partition

λ and flagging ~n. Each of the following is a formula for the double Grothendieck

polynomial Gπ(x,y).

1. As a sum over the set LSVT (λ, ~n) of limit semistandard tableau associ-

ated to (λ, ~n),

Gπ(x,y) =
∑

τ∈LSVT(λ,~n)

∏

b∈λ

∏

i∈τ(b)

(1 − xiy
−1
i+j(b))

∏

h∈Eλ,~n(b)\τ(b)

xhy−1
h+j(b),

where Eλ,~n =
⋃

T is the union of all semistandard tableaux τ ∈

SSYT(λ, ~n), and j(b) = c(b) − r(b) is the difference of the row and

column indices of the box b ∈ λ.

2. As a sum over the set SVT (λ, ~n) of semistandard set-valued tableau

associated to (λ, ~n),

Gπ(x,y) =
∑

τ∈SVT(λ,~n)

(−1)|τ |−|λ|
∏

b∈λ

∏

i∈τ(b)

(1 − xiy
−1
i+j(b)).

3. As a sum over the set SSYT (λ, ~n) of semistandard Young tableaux of

shape λ flagged by ~n,

Gπ(x,y) =
∑

τ∈SSYT(λ,~n)

∏

b∈λ

∏

i∈τ(b)

(1 − xiy
−1
i+j(b))

∏

h∈Eλ,~n(b)\Nτ (b)

xhy−1
h+j(b),

where Nτ is the tableau obtained by adding to each box b all numbers in

Eλ,~n(b) either smaller than the entry of τ(b), or larger than that entry

provided that replacing the entry with the larger number would not give

a tableau in SSYT(λ, ~n).

The second of these formulae for vexillary double Grothendieck polynomials

was based on the algebraic geometry of matrix Schubert varieties [KMY05]. It

was that geometry that first motivated us to fit Young tableaux into a simplicial

complex.

2. Properties of tableau complexes

2.1. Generalities and boundary faces. Recall that the vertices of a

tableau complex consist of the complements (x X7→ y) of single elements of E.
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Proposition 2.1: Let ∆ = ∆E(X
T
−→ Y ) be a tableau complex, and assume

that (x 7→ y) ∈ E.

1. ∆ is pure, and its facets are labeled by the tableaux in T .

2. Writing |F | =
∑

x∈X |F (x)|, the codimension of a face F in ∆E(X
T
−→ Y )

equals |F | − |X |.

3. Each ridge is contained in at most two facets. In particular, if

∆E(X
T
−→ Y ) is shellable then it is homeomorphic to a ball or sphere.

4. (x X7→ y) is a cone vertex (meaning it lies in every facet) if and only

if f(x) 6= y for every f ∈ T . In particular, E =
⋃

T exactly when

∆E(X
T
−→ Y ) has no cone vertices.

5. (x X7→ y) is a phantom vertex, meaning (x X7→ y) /∈ ∆, precisely if f(x) =

y for all f ∈ T .

Proof. Only statement 3 is not immediate from the definitions. A ridge is a

set-valued tableau taking one extra value. By the pigeonhole principle, since

every x ∈ X gets at least one y ∈ Y , there exists exactly one x with two values

from Y , all others being 1. Such a set-valued tableau can contain at most

two tableaux from T . The statement about being a ball or sphere now follows

from [BLSWZ99, Proposition 4.7.22].

Cone vertices are in some sense uninteresting: a simplicial complex can be

canonically reconstructed from its set of cone vertices and its core, which is the

subcomplex with the cone vertices removed. In particular, the whole complex

is a ball or sphere if and only if its core is a ball or sphere. It is convenient

for inductive purposes not to assume that E =
⋃

T , although we will generally

assume E =
⋃

T in examples.

Proposition 2.2: Assume that ∆E(X
T
−→ Y ) is homeomorphic to a ball or

sphere. A face F of ∆E(X
T
−→ Y ) lies on the boundary of ∆E(X

T
−→ Y ) if and

only if there exists a tableau g : X → Y such that g ⊆ F but g /∈ T .

Proof. By definition, a face of a simplicial ball lies in the boundary if and only if

it is a face of a boundary ridge. A ridge itself lies in the boundary if and only if

it is a face of precisely one facet. Of the two tableaux contained in a given ridge,

at least one must lie in T , because a ridge is a face of ∆E(X
T
−→ Y ). Hence a

ridge is a boundary face if and only if the unique other tableau it contains does

not lie in T .
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Now let F be an arbitrary face of ∆E(X
T
−→ Y ). If every function f ⊆ F lies

in T , then every ridge with F as a face is a union of two tableaux from T , so F

is interior. On the other hand, suppose that g ⊆ F for some tableau g /∈ T , and

let f ∈ T be a facet having F as a face, so f ⊆ F . Then f∪g ⊆ F is a set-valued

tableau that has F as a face. Some of the elements x ∈ X are assigned two

distinct Y -values by f ∪ g. If deleting the value f(x) from (f ∪ g)(x) yields a

face G of ∆E(X
T
−→ Y ), then induction on the codimension implies that G lies

on the boundary, and hence F ⊇ G does, as well. If no such x exists, so deleting

the value f(x) from f ∪ g always results in a set-valued tableau that is not a

face of ∆E(X
T
−→ Y ), then f is the unique tableau in T with f ∪ g as a face;

thus f ∪ g is a face of only one facet (namely f), and hence f ∪ g is a boundary

face with F as a subface.

2.2. Safe vertices in tableau complexes. Given a simplicial complex ∆

with a vertex v, define the star and deletion of v to be

starv∆ = {C ∈ ∆ : C ∪ v ∈ ∆} and delv∆ = {C ∈ ∆ : v /∈ C}.

Then ∆ = starv∆∪delv∆. The star has an obvious cone vertex, namely v itself,

and its deletion from the star is called the link of v in ∆. More generally, the

link of a face C in a simplicial complex ∆ is defined as

linkC∆ = {D ∈ ∆ : D ∩ C = ∅, D ∪ C ∈ ∆}.

By convention, the vertex set of this link does not include the (now phantom)

vertices of C.

Proposition 2.3: Let F be a face of ∆ = ∆E(X
T
−→ Y ). Let Tlink =

{f ∈ T : f ⊆ F} be the set of facets of ∆ having F as a subface. Then

the link of F in ∆ is isomorphic to ∆F (X
Tlink−−−→ Y ).

Proof. It follows from the definitions that the faces of both linkF ∆ and

∆F (X
Tlink−−−→ Y ) are the set-valued tableaux contained in F and containing

a tableau from T .

Proposition 2.4: Let ∆E(X
T
−→ Y ) be a tableau complex. Let Tstar =

{f ∈ T : f(x) 6= y}. Then star(x X7→y)∆E(X
T
−→ Y ) = ∆E(X

Tstar−−−→ Y ).
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Proof. Since ∆E(X
T
−→ Y ) is pure, the star of (x X7→ y) is the union of the

(closures of) facets that have (x X7→ y) as a vertex. These facets are exactly the

tableaux f ∈ Tstar.

Call a vertex (x X7→ y) of ∆E(X
T
−→ Y ) safe if for every f ∈ T , changing the

label on x from f(x) to y yields a tableau that is again in T . While the star of

a vertex in a pure complex is always pure, the deletion might not be.

Proposition 2.5: The deletion del(x X7→y)∆ of the vertex (x X7→ y) from the sim-

plicial complex ∆ = ∆E(X
T
−→ Y ) is pure if and only if either (x X7→ y) is a cone

vertex or (x X7→ y) is safe.

Proof. If (x X7→ y) is a cone vertex then ∆ is the cone over del(x X7→y)∆. A simpli-

cial complex is pure if and only if the cone over it is, so we assume that (x X7→ y)

is not a cone vertex.

Given a set-valued tableau F , let del(x X7→y)F denote the set-valued tableau

that sends a 7→ F (a) for a 6= x and sends x 7→ F (x) ∪ {y}. In particular,

del(x X7→y)F = F if and only if y ∈ F (x). The definitions imply that del(x X7→y)∆

consists of the set-valued tableaux del(x X7→y)F for F ∈ ∆, and the facets of

del(x X7→y)F have the form del(x X7→y)f for tableaux f ∈ T . Since (x X7→ y) is not a

cone vertex, at least one facet of ∆ sends x to y. Thus the deletion is pure if

and only if, for all tableaux f ∈ T , the set-valued tableau del(x X7→y)f contains

a tableau g ∈ T satisfying g(x) = y. The desired result follows because when

f(x) does not already equal y, the only possibility for g is obtained by changing

f(x) to y.

Corollary 2.6: Let (x X7→ y) be a safe vertex of the tableau complex

∆ = ∆E(X
T
−→ Y ). If Tdel = {f ∈ T : f(x) = y}, then del(x X7→y)∆ =

∆E(X
Tdel−−→ Y ).

2.3. Tableau complexes on posets. At this point we make some additional

assumptions to guarantee a ready supply of safe vertices. The following theorem

is stated much more generally than our motivating examples require; we hope

that this Bourbakiesque level of generality helps to indicate which assumptions

are leading to which conclusions.

The key to our geometric conclusions (shellable ball or sphere) is the notion

of vertex-decomposable simplicial complex in the sense of [BP79]. By defini-

tion, every simplex is vertex-decomposable, and an arbitrary simplicial complex
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is vertex-decomposable if and only if it is pure and has a vertex whose deletion

and link are both vertex-decomposable.

Lemma 2.7 ([BP79]): A simplicial complex ∆ is shellable if both the dele-

tion delv∆ and the star starv∆ of a vertex v are shellable. Hence, all vertex-

decomposable simplicial complexes are shellable.

Proof. ([BP79]) Construct a shelling of ∆ by concatenating shellings of the

deletion and star of v (in that order), the latter being the cone over a shelling

of the link.

Theorem 2.8: Let X and Y be finite partially ordered sets. For each x ∈ X ,

let Yx be a totally ordered subset of Y . Fix a set Ψ of pairs (x1, x2) from X

such that x1 < x2. Let T be the set of tableaux f : X → Y such that

• f(x) ∈ Yx for all x ∈ X ;

• f is weakly order-preserving, i.e. x1 ≤ x2 implies that f(x1) ≤ f(x2);

and

• if (x1, x2) ∈ Ψ then f(x1) < f(x2).

Let E ⊆ X × Y contain
⋃

T . Then ∆E(X
T
−→ Y ) is homeomorphic to a ball or

sphere, and it is vertex-decomposable.

Proof. We need only prove vertex-decomposability, for then the ball or sphere

conclusion is a consequence of Proposition 2.1.3 and Lemma 2.7. To demon-

strate vertex-decomposability, we need only find, for each tableau complex sat-

isfying the hypotheses of the theorem, a vertex whose deletion and link both

satisfy the hypotheses.

Suppose that ∆E(X
T
−→ Y ) has a cone vertex (x X7→ y). Viewing (x X7→ y)

as a subset of X × Y , we find that (x X7→ y) already contains
⋃

T by Proposi-

tion 2.1.4, so ∆(x X7→y)(X
T
−→ Y ) satisfies the conditions of the theorem. This

simplicial complex is the link by Proposition 2.3, and it equals the deletion

because (x X7→ y) is a cone vertex.

Now, assume that ∆E(X
T
−→ Y ) has no cone vertices. If all of the vertices

of ∆E(X
T
−→ Y ) are phantom, then there is only one facet and we are done.

Otherwise, there exists a non-phantom vertex (m X7→ y). Choose one with max-

imal possible m, and let ym be the maximum element of Ym. Since there are

no cone points, the values of all tableaux in T are fixed at elements x > m, i.e.,

for each x > m and all f ∈ T there is a single yx ∈ Y such that f(x) = yx.
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Therefore, as (m X7→ ym) is itself not a cone vertex, we get ym ≤ yx for all x > m,

and ym < yx if (m, x) ∈ Ψ. It follows that the vertex (m X7→ ym) is safe: we can

safely change the label on m from f(m) to ym to get another tableau satisfying

the three conditions to be in T because ym ≥ f(m) for all f ∈ T .

(We used that Ym has a maximum element for this, but not that it is totally

ordered.)

Most of the work has now been done in Section 2.2: if

Tstar = {f ∈ T : f(m) 6= ym} and Tdel = {f ∈ T : f(m) = ym},

then the star and deletion of (m X7→ ym) are ∆E(X
Tstar−−−→ Y ) and ∆E(X

Tdel−−→ Y ),

respectively, by Proposition 2.4 and Corollary 2.6. The star and deletion satisfy

the three conditions from the statement of the theorem, with the same X , Y ,

and Ψ, but with Ym changed either to Ym \ {ym} or else to {ym}, respectively.

Given that the star satisfies the hypotheses of the theorem, arguing as in the

second paragraph of the proof shows that the link does, as well.

(To work recursively, we need Ym \ {ym} to again have a maximum element;

this is why we required Ym to be totally ordered. In addition, our new choice

of m for the link must have a maximum element in its Ym; this is why we need

every Yx to have a maximum.)

Before this theorem, we never needed to compare f(x1) and f(x2) for x1 6= x2;

in some sense, it would have been more natural for the tableaux to take values

in separate sets Yx. Now that we used a partial order on Y to define our set T

of tableaux, we have finally made such comparisons.

Example 2.9: More generally than in Section 1.2, let X be the set of boxes

in a skew-shape λ/µ, and each Yx = Y = {1, . . . , n}. Partially order X by

asking that each box is less than the boxes southeast of it. Let Ψ be the set of

pairs {(upper box, lower box)} where one box is atop another. Then T is the

set of semistandard Young tableaux of shape λ/µ with maximum value n, and

∆⋃
f∈T f (X

T
−→ Y ) is the Young skew tableau complex.

The faces of this complex are labeled with set-valued Young skew tableaux,

which were also introduced in [Bu02]. Buch’s definition of “semistandard” set-

valued Young tableaux exactly matches our criterion, Proposition 2.2, for a face

to be interior.

(In fact, the Ψ machinery was unnecessary to model semistandardness; we

could just take Ψ = ∅, subtract r − 1 from the values in the rth row, and
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adjust the sets Yx to get a set combinatorially equivalent to semistandard Young

tableaux. But the formulation with Ψ is clearer, more general, and no more

difficult.)

Example 2.10: Let X be a poset, Ψ = ∅, and Y = {0, 1}. Then the tableaux

correspond to partitioning X into a lower and an upper order ideal (the 0 and

1 parts), or equivalently to antichains in X (the maximum elements labeled 0).

By Theorem 2.8, this tableau complex is homeomorphic to a ball (or sphere, if

X is totally unordered).

Remark 2.11: Other classes of vertex-decomposable complexes include the

greedoid complexes [BKL85] and subword complexes [KM03]; see [KM03, Re-

mark 2.6] for an extended discussion. Tableau complexes are different from each

of these. For example, the Young tableau complex for the vertical domino with

entries at most 5 is not a greedoid complex if the ground set is taken to be

the vertex set. To show the difference between subword and tableau complexes,

consider the Young tableau complex for the 2 × 2 square shape with entries at

most 3; it has dimension 3 and eight vertices, none of which is a cone vertex. On

the other hand, deleting all cone points from the subword complex in [KMY05]

having the same tableaux for facets yields a simplicial complex of dimension 2

with seven vertices.

It is worth noting that the phrase “ball or sphere” essentially always really

means “ball”. To get a sphere, there must be no cone vertices, so E =
⋃

T . But

even then, every ridge lies in two facets, so every vertex must be safe; in other

words, the possible T -tableau values at each x ∈ X are independent. We spell

this out further in Section 3. For now, here is a characterization of the interior

faces, which includes all of the faces in the case of a sphere. As a matter of

notation, if Y1 and Y2 are two subsets of a poset Y , write Y1 ≤ Y2 if y1 ≤ y2 for

all y1 ∈ Y1 and y2 ∈ Y2. Similarly, write Y1 < Y2 if strict inequality holds. The

following is an immediate consequence of the definitions and Proposition 2.2.

Corollary 2.12: Assume the notation and hypotheses of Theorem 2.8. A

face F is interior to ∆E(X
T
−→ Y ) if and only if

• F (x1) ≤ F (x2) whenever x1 < x2; and

• F (x1) < F (x2) whenever (x1 < x2) ∈ Ψ.
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2.4. Shelling poset tableau complexes. The next theorem will help us

describe the h-vectors and Hilbert series of poset tableau complexes and their

Stanley-Reisner rings.

Theorem 2.13: Assume the notation and hypotheses of Theorem 2.8, and

choose a linear extension ε of the partial ordering on X . Lexicographically

order T by comparing f1, f2 ∈ T at the ε-largest element m ∈ X where they

differ. Placing the one with the larger label on m first yields a total order on

the facets of ∆E(X
T
−→ Y ) that is a shelling.

Proof. Remember that f1(m) and f2(m) are comparable, since Ym is totally

ordered. Therefore, the procedure in the statement of the theorem yields a

total order on the facets. We will show that this total order is the shelling

produced by applying Lemma 2.7 recursively as in the proof of Theorem 2.8.

At each stage in that proof, we either vertex decompose at a cone vertex or

we choose a maximal element m ∈ X among those supporting non-phantom

vertices (m X7→ y). Vertex decomposing at a cone vertex does not alter the set T

of facet tableaux, so it does not matter in which order we delete cone vertices.

Only the order in which we choose the maximal elements m matters. Use the

ε-order: since Lemma 2.7 puts the deletion (f(m) = ym) first before the star

(f(m) 6= ym, which is equivalent to f(m) < ym because ym is maximum in Ym),

the resulting shelling is as desired.

3. Characterizations of tableau complexes

Let ∆ be a pure simplicial complex on a vertex set V . Declare that W ⊆ V is

a pure factor of ∆ if the number |f ∩ W | of vertices in the intersection of f

with W is the same for all facets f ∈ ∆. For example, a singleton {v} is a

pure factor if and only if v is a phantom or cone vertex, with |f ∩ {v}| = 0 or

|f ∩ {v}| = 1, respectively. If W is a pure factor, then its complement V \ W

is a pure factor, too. For any set W ⊆ V of vertices, write ∆|W for the full

subcomplex delV \W ∆ supported on W .

Proposition 3.1: Let ∆ be a pure simplicial complex on the vertex set V , and

suppose that V = V1∪· · ·∪Vk is partitioned into a disjoint union of pure factors

V1, . . . , Vk. Then ∆|Vi
is pure for each 1 ≤ i ≤ k, and ∆ is a top-dimensional
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subcomplex of their join

{F1 ∪ · · · ∪ Fk : Fi is a face of ∆|Vi
for each 1 ≤ i ≤ k}.

Proof. Since ∆ is pure, it follows from the definitions that ∆|Vi
is pure. On

the other hand, it also follows by definition that a subset f ⊆ V1 ∪ · · · ∪ Vk is

a facet of the join of the complexes ∆|Vi
if and only if f ∩ Vi is a facet of the

individual complex ∆|Vi
for each i. Since the vertex set V is the disjoint union

V1 ∪ · · · ∪ Vk, every facet of ∆ has this property.

Lemma 3.2: Let ∆ be a tableau complex ∆⋃
T (X

T
−→ Y ). For each x ∈ X ,

define the subset Vx = {(x X7→ y) : (x 7→ y) ∈
⋃

T} of the vertex set of ∆. Then

1. the subsets {Vx : x ∈ X} partition the vertex set of ∆;

2. each subset Vx is a pure factor; in fact, |f ∩Vx| = |Vx|− 1 for every facet

tableau f ; and

3. each induced complex ∆|Vx
is the boundary of the simplex on Vx.

Proof. The first two numbered claims are immediate from the definitions. For

the third, it follows from the second that ∆|Vx
is a union of some subset of the

facets (each of size |Vx|−1) in the boundary of the simplex on Vx. Each facet of

∆|Vx
avoids using some (unique) vertex of Vx. If any vertex of Vx does not occur

this way, then it lies in every facet of ∆|Vx
; in other words, it is a cone vertex

of ∆|Vx
. Since each facet of ∆ survives after deleting V \ Vx to give a facet of

∆|Vx
, we conclude that ∆ has a cone vertex, contradicting Proposition 2.1.4.

Therefore every face of size |Vx| − 1 occurs in ∆|Vx
.

Theorem 3.3: A pure complex is (isomorphic to) a tableau complex

∆⋃
T (X

T
−→ Y ) if and only if it can be expressed as a top-dimensional sub-

complex of a join of boundaries of simplices.

Proof. That ∆⋃
T (X

T
−→ Y ) can be expressed in the desired manner is an

immediate consequence of Proposition 3.1 and Lemma 3.2. Now, suppose that

∆ is a pure complex expressible as a top-dimensional subcomplex of the join of

boundaries of simplices with vertex sets V1, . . . , Vk. Then the vertex set V of ∆

is the disjoint union V1 ∪ · · · ∪ Vk. Let X = {1, . . . , k} and set Y = V . Each

facet f of ∆ defines a function X → Y taking i to the element Vi \ f . Using

these as the set T of tableaux, we find that ∆ = ∆⋃
T (X

T
−→ Y ).
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Remark 3.4: In particular, if a tableau complex has no boundary ridges (ridges

contained in just one facet), then it is the join of a bunch of boundaries of

simplices, and, in particular, it is a sphere. This, plus Proposition 2.3, gives

another proof of Proposition 2.2.

Let the codimension of a pure complex ∆ be the number of vertices outside

any facet. The only way for the codimension to equal 0 is if V consists only of

cone vertices (so V is a simplex). If V breaks up as a union V1 ∪ · · · ∪ Vk of

pure factors, then the codimension of ∆ is the sum of the codimensions of the

full subcomplexes supported on the Vi.

This suggests a characterization of tableau complexes by the following ex-

tremal property. Given a pure complex ∆ with the cone and phantom vertices

deleted, look for a pure factor W . Splitting into W and V \W , the codimension

of each full subcomplex can be no larger than that of ∆. By the theorem, ∆ is a

tableau complex if and only if we can split enough to whittle the codimensions

of all of the full subcomplexes down to 1.

The situation is somewhat dual to order complexes of ranked posets. If P

is a ranked poset, its order complex has vertex set P , and Q ⊂ P defines

a face if and only if Q is totally ordered. If Pr denotes the set of elements

with a given rank r, then the induced complex on Pr is pure of dimension 0,

rather than codimension 1 like a tableau complex. (If it seems unsatisfying for

“codimension 1” to be dual to “dimension 0”, then consider the latter more

honestly as “affine-dimension 1”.) Very few simplicial complexes are both order

complexes and tableau complexes; we leave their characterization as an exercise

for the reader.

Remark 3.5: Tableau complexes bear superficial similarities to matroid com-

plexes. A simplicial complex is a matroid if and only if every subcomplex

induced on a subset of the vertex set is pure. Theorem 3.3 says that a simpli-

cial complex is a tableau complex if and only if the vertex set can be partitioned

into subsets that are pure factors of codimension 1. In reality, there are ma-

troid complexes that are not tableau complexes, and conversely. For example,

we have already seen in Remark 2.11 that tableau complexes can fail to be gree-

doid complexes, of which matroid complexes are special cases. For an example

the other way, the matroid for the complete graph K4 on four vertices is the

union of three segments joined at a point. If this were a tableau complex, then

so would be the result of deleting the cone point, by Proposition 2.3. But a set
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of three points is not a tableau complex by Remark 3.4, and hence neither is

the matroid for K4.

4. Hilbert series and K-polynomials

In this section we collect some formulae for the Hilbert series of the Stanley–

Reisner rings of tableau complexes. Our main reference for generalities on Betti

numbers, Hilbert series, and K-polynomials (which are numerators of Hilbert

series) is [MS04]. For notation, let k be a field, and set S = k[V ], the polynomial

ring in variables v ∈ V indexed by a finite set V . This is the ambient ring for

objects like the Stanley-Reisner ideal I∆ = 〈
∏

v∈F v : F is not a face of ∆〉

of a simplicial complex ∆ with vertex set V , and the Stanley-Reisner ring

S/I∆. We shall use the alphabet t = {tv : v ∈ V } for finely graded Hilbert

series and K-polynomials. When ∆ is a tableau complex ∆E(X
T
−→ Y ), recall

that V is the set {(x X7→ y) : (x 7→ y) ∈ E} of complements of single elements

of E.

Proposition 4.1: The K-polynomial associated to the tableau complex ∆ =

∆E(X
T
−→ Y ) is

K(S/I∆; t) =
∑

F

∏

x∈X

(
∏

y∈E(x)\F (x)

t(x X7→y)

∏

y∈F (x)

(1 − t(x X7→y))

)
,

the sum being over all set-valued tableaux F ⊆ E each containing some tableau

f ∈ T .

Proof. This formula is [MS04, Theorem 1.13] applied to tableau complexes,

since the condition y ∈ E(x) \ F (x) means that (x X7→ y) is a vertex of F and

the condition y ∈ F (x) means that (x X7→ y) is not a vertex of F .

Our second formula uses the ball-or-sphere hypothesis; it, therefore, holds for

(among other things) all poset tableau complexes. It will be simpler to prove

the formula for general balls and spheres first.

Proposition 4.2: If ∆ is a simplicial ball or sphere with vertex set V , then

K(S/I∆; t) =
∑

F

(−1)codim(F )
∏

v∈V \F

(1 − tv),

where the sum is over all interior faces of ∆. (All faces are interior if ∆ is a

sphere.)
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Proof. Consider the Alexander dual ideal I⋆
∆ = 〈

∏
v∈V \F v : F is a face

of ∆〉, and start by calculating the K-polynomial of I⋆
∆. The coefficient on

the monomial
∏

v∈V \F tv in K(I⋆
∆; t) is the alternating sum of the Betti num-

bers of I⋆
∆ in degree

∏
v∈V \F v [MS04, Proposition 8.23]. By Hochster’s for-

mula [MS04, Corollary 1.40], the ith such Betti number equals the dimension

dimk H̃i−1(linkF ∆; k) of the reduced homology of the link of F in ∆, and it

comes with a sign (−1)i. If F is a boundary face, then the link of F is con-

tractible; but if F is an interior face, then the link of F is a sphere of dimension

codim(F ) − 1. Therefore K(I⋆
∆; t) =

∑
F (−1)codim(F )

∏
v∈V \F tv, where the

sum is over all interior faces F of ∆. The Alexander inversion formula [MS04,

Theorem 5.14] now implies the desired result.

Theorem 4.3: If the tableau complex ∆ = ∆E(X
T
−→ Y ) is homeomorphic to

a ball or sphere, then

K(S/I∆; t) =
∑

F

(−1)|F |−|X|
∏

x∈X

∏

y∈F (x)

(1 − t(x X7→y)),

the sum being over all set-valued tableaux F ⊆ E such that every tableau f ⊆ F

lies in T .

Proof. The factor (−1)|F |−|X| is the codimension of F . The condition y ∈ F (x)

means that (x X7→ y) lies in the vertex set of ∆ but not F . The sum is over all

interior faces by Proposition 2.2. Therefore, the result is simply Proposition 4.2

for tableau complexes.

A shelling of a pure d-dimensional simplicial complex ∆ is an ordering of

the facets F1, . . . , Fk such that Fi ∩ (F1 ∪ · · · ∪ Fi−1) has pure dimension d − 1

for each 1 ≤ i ≤ k. This guarantees that for each i, there is a unique minimal

new face Ni ∈ ∆ that is a face of Fi but not of F1, . . . , Fi−1. By convention,

N1 is the empty face.

Lemma 4.4: Given a shelling of a simplicial complex ∆ with new faces

N1, . . . , Nk as above,

K(S/I∆; t) =

k∑

i=1

∏

v 6∈Fi

(1 − tv)
∏

v∈Ni

tv.

Proof. Use induction on the number k of facets of ∆.
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The Z-graded coarsening of the Hilbert series to one variable t gives

H(S/I∆, t) =

d∑

j=0

hjt
j

(1 − t)d
.

When ∆ is shellable, the h-vector (h0, h1, . . . , hd) consists of nonnegative in-

tegers. Moreover, the shelling gives a manifestly positive way to compute these

numbers: hj counts the number of dimension j faces among N1, . . . , Nk.

Theorem 4.5: Resume the notation and hypotheses of Theorem 2.8, and set

E =
⋃

T . Given a tableau f ∈ T , define Uf (x) as the set of elements y ∈ Y

such that f(x) ≤ y and moving the label on x from f(x) up to y yields a tableau

in T . Then

K(S/I∆; t) =
∑

f∈T

∏

x∈X

((
1 − t(x X7→f(x))

) ∏

y∈Uf (x)

t(x X7→y)

)
.

Finally, if η(f) = −|X | +
∑

x∈X |Uf (x)|, then hj is the number of tableaux

f ∈ T with η(f) = j.

Proof. The proof will be done once we produce a shelling of ∆ for which Nf ,

defined by Nf (x) = E(x) \ Uf (x), is the minimal new face at the stage when

we add the facet f . Pick a linear extension ε of X and take the shelling order

of the facets f1, f2, . . . of ∆ as in Theorem 2.13. For f := fi we show that Nf

is the minimal new face of f .

First, Nf is a set-valued tableau in ∆ that is a face of f , since it contains f .

Second, to see that Nf is not a face of any previous facet, we must show that

f does not contain f1, . . . , fi−1. Note that by construction, any other g ∈ T

contained in Nf must assign to each x ∈ X either f(x) or some y < f(x).

Such a facet tableau g must appear later than f in the facet ordering. The

maximality of Nf ⊆ E containing f and not containing f1, . . . , fi−1 is also clear

from the construction. Hence Nf is the minimal new face of f , as claimed. For

the K-polynomial formula, apply Lemma 4.4.

Example 4.6: For the tableau complex in Figure 3 (after Example 1.1), listing

the facets in the order

2 2
3

, 1 2
3

, 1 1
3

, 1 2
2

, 1 1
2

yields the shelling in the proof of Theorem 4.5. For the first of these tableaux,

all of the sets U(x) are singletons: there is no way to increase the number in
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any box while respecting the flagging, which requires that the entries in the top

row are at most 2 and the lower entry is at most 3. For the second tableau

above, U(x) = {1, 2} for the upper-left corner x, because moving the 1 up to

a 2 keeps the tableau semistandard. Similarly, all of the sets U(x) for the third

and fourth tableaux are singletons except for upper-right box and the bottom

box, respectively, whose sets U(x) are {1, 2} and {2, 3}. In the last tableau

above, only the two lower-right corners have non-singleton sets U(x), and these

are {1, 2} and {2, 3}. For the above five tableau, the function η at the end of

Theorem 4.5 takes the values 0, 1, 1, 1, and 2, respectively. Thus the simplicial

complex in Figure 3 has h-vector (1, 3, 1).

Our final K-polynomial formula in this section will arise again after Corol-

lary 5.3.

Proposition 4.7: If (x X7→ y) is a safe vertex of ∆ = ∆E(X
T
−→ Y ), then

K(S/I∆; t) = t(x X7→y)K(S/Idel; t) + (1 − t(x X7→y))K(S/Istar; t),

where Idel and Istar are the Stanley–Reisner ideals for the deletion tableau

complex ∆E(X
Tdel−−→ Y ) and the star tableau complex ∆E(X

Tstar−−−→ Y ) from

Propositions 2.4 and 2.5, respectively.

Proof. Any vertex decomposition ∆ = delv∆ ∪ starv∆ gives an inductive for-

mula

K(S/I∆; t) = tvK(S/Idelv∆; t) + (1 − tv)K(S/Istarv∆; t)

for the K-polynomial.

5. Applications to vexillary double Grothendieck polynomials

In this section, we apply Section 4 to obtain formulae for double Grothendieck

polynomials for vexillary permutations. This gives formulae for the Hilbert

series and K-polynomials of vexillary matrix Schubert varieties (also known as

(one-sided) ladder determinantal varieties). See [KMY05] for a treatment of the

related algebraic geometry.

5.1. Vexillary permutations and flaggings of partitions. Identify a

permutation π ∈ Sn with the square array having blank boxes in all locations
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except at (i, π(i)) for i = 1, . . . , n, where we place dots. This defines the dot-

matrix of π. We associate the diagram

D(π) =
{
(p, q) ∈ {1, . . . , n} × {1, . . . , n} : π(p) > q and π−1(q) > p

}

to π. Pictorially, if we draw a “hook” consisting of lines going east and south

from each dot, then D(π) consists of the squares not in the hook of any dot.

Example 5.1: Let π = ( 1 2 3 4 5 6 7 8 9
8 7 1 6 2 9 5 3 4 ). Its dot-matrix and diagram are com-

bined below:
s

s

s

s

s

s

s

s

s

In what follows, we will assume our permutations π are vexillary, also known

as 2143-avoiding: there exist no indices 1 ≤ a < b < c < d ≤ n with

π(b) < π(a) < π(d) < π(c). We need some facts about vexillary permutations;

further details consistent with the terminology and notation used here may be

found in [KMY05] and the references therein.

Throughout we will identify a partition λ with its Young diagram. There is

a partition λ associated to π: let the kth diagonal of λ (those boxes {(i, k+ i)})

have as many boxes as the kth diagonal of D(π), for each k. Indeed, this sets

up a natural bijection between the boxes of λ and the boxes of D(π), taking

the jth box down in the kth diagonal to the jth box down in the kth diagonal.

(The difference is that in D(π) there may be spaces in between the boxes.) This

bijection also defines a flagging ~n on the rows of λ. Namely, ni ∈ N+ equals

the row of D(π) containing the box corresponding to the rightmost box of the

ith row of λ. We will thus speak interchangeably about π and the pair (λ, ~n).

In Example 5.1, the permutation π is vexillary, λ = (7, 6, 4, 3, 2), and ~n =

(1, 2, 4, 6, 7).

We remark that ~n need not be a weakly increasing sequence. For instance, if

σ = ( 1 2 3 4 5 6 7 8
2 7 4 5 8 1 3 6 ), then λ = (5, 3, 2, 2, 1) and ~n = (2, 5, 4, 4, 5).
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Call a set-valued tableau τ with shape λ ~n-flagged if the maximum (so, the

last) entry in each row is bounded above by the corresponding entry of ~n.

Extend the definition of the empty-face tableau in the obvious way: it is

the union of all the ~n-flagged semistandard tableau on the shape λ. Let this

set-valued tableau be denoted by Eλ,~n. (Note that Eλ,~n(b) is an interval in

the natural numbers N: the smallest entry is the row position of b ∈ λ while

the largest entry is the position of the corresponding box of D(π), under the

bijection between λ and D(π) described above.) This gives rise to a tableau

complex ∆(λ, ~n) generalizing that described in Section 1.2:

Corollary 5.2: For a partition λ and a flagging ~n associated to a vexillary

permutation π, ∆(λ, ~n) is a simplicial ball, and its interior faces are the flagged

semistandard set-valued Young tableaux.

5.2. Formulae for vexillary Grothendieck polynomials. For each per-

mutation π ∈ Sn there is a (double) Grothendieck polynomial

Gπ(x1, . . . , xn, y1, . . . yn) ∈ Z[x±1
1 , . . . , x±1

n , y±1
1 , . . . , y±1

n ]

of Lascoux and Schützenberger [LS82]. The case that π is vexillary has been of

specific interest; see [Fu92, KM01, KMY05]. We give tableau formulae in this

setting.

Let SVT (λ, ~n) denote the semistandard set-valued tableaux of shape λ and

flagging ~n. Similarly, denote by SSYT(λ, ~n) and LSVT (λ, ~n) the corresponding

set of semistandard and limit semistandard tableaux, respectively. For a set-

valued tableau τ , let τ(b) denote the set of entries in box b.

Corollary 5.3: Let π ∈ Sn be a vexillary permutation and (λ, ~n) be the

associated partition and flagging. Each of the following is a formula for the

double Grothendieck polynomial Gπ(x,y).
∑

τ∈LSVT(λ,~n)

∏

b∈λ

∏

i∈τ(b)

(1 − xiy
−1
i+j(b))

∏

i∈Eλ,~n(b)\τ(b)

xiy
−1
i+j(b)

∑

τ∈SVT(λ,~n)

(−1)|τ |−|λ|
∏

b∈λ

∏

i∈τ(b)

(1 − xiy
−1
i+j(b))

∑

τ∈SSYT(λ,~n)

∏

b∈λ

∏

i∈τ(b)

(1 − xiy
−1
i+j(b))

∏

i∈Eλ,~n(b)\Nτ (b)

xiy
−1
i+j(b)

Here, j(b) = c(b) − r(b) is the difference of the column and row indices of the

box b ∈ λ. Moreover, in the last formula, Nτ is the tableau obtained by adding
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to each box b all entries of E(b) either smaller than the entry of τ(b), or larger

than the entry of τ(b) but such that replacing τ(b) with this larger number

would not give a tableau in SVT (λ, ~n).

Proof. Formally, the second formula in the corollary is obtained as follows.

Compute the K-polynomial of ∆λ,~n via Theorem 4.3, using λ, b, and i here

in place of X , x, and y there. Then, for each fixed b and i, substitute the

expression xiy
−1
i+j(b) for the variable t(bX7→i).

It was shown in [KMY05] that the second formula equals the desired double

Grothendieck polynomial. Therefore, applying the same substitution procedure

to the results of Proposition 4.1 and Theorem 4.5 yields two more formulae for

the same Grothendieck polynomial. These formulae are, respectively, the first

and third formulae here.

In the above proof we appealed to [KMY05] to confirm that our K-poly-

nomials are in fact Grothendieck polynomials. Let us briefly sketch how this

can be proved directly; we refer the reader to [KMY05] for terminology. To each

vexillary permutation π there is an accessible box of λ. From this one can define

two vexillary permutations πP and πC . We obtain a safe vertex of the flagged

Young tableau complex by removing the largest entry of Eλ,~n that appears in

the accessible box. The resulting deletion and star subcomplexes are naturally

isomorphic to (multicones over) the flagged Young tableau complexes for πP

and πC respectively. The recursion from Proposition 4.7 is precisely Lascoux’s

transition formula for vexillary Grothendieck polynomials [La01, La03] (after

the substitution t(x X7→y) 7→ xiy
−1
i+j(b)). Thus, since both polynomials satisfy the

same recursion (and initial conditions), they are equal.

Specializations of these formulae are of interest. Suppose we set yj = 1

for each j and replace xi with 1 − xi for each i. If we assume, furthermore,

that π is Grassmannian, then we obtain Buch’s formula [Bu02] for the single

Grothendieck polynomial Gλ(1− x) [Bu02]. If, instead, we take the lowest

degree terms of the polynomial, we obtain Wachs’s formula for a flagged Schur

polynomial [Wa85]. Making both of these specializations gives the classical

tableau formula for an ordinary Schur polynomial.

We remark that it is also possible to use similar methods to extend these

results to give set-valued skew tableau formulae for “321-avoiding permutations”

(see Example 2.9).
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